
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 6:
File Processing

2Copyright 2006 by Pearson Education

Lecture outline
� file input using Scanner

� File objects

� exceptions

� file names and folder paths

� token-based file processing

3Copyright 2006 by Pearson Education

File input using ScannerFile input using Scanner

reading: 6.1 - 6.2, 5.3

4Copyright 2006 by Pearson Education

File objects
� Programmers refer to input/output as "I/O".

� The File class in the java.io package represents files.
� import java.io.*;

� Create a File object to get information about a file on the disk.

(Creating a File object doesn't create a new file on your disk.)

File f = new File("example.txt");
if (f.exists() && f.length() > 1000) {

f.delete();
}

whether this file exists on diskexists()

returns file's namegetName()

changes name of filerenameTo(file)

removes file from diskdelete()

returns number of characters in filelength()

returns whether file is able to be readcanRead()

DescriptionMethod name

5Copyright 2006 by Pearson Education

Reading data from files
� To read files, pass a File when constructing a Scanner .

� Scanner for a file, general syntax:
Scanner <name> = new Scanner(new File(" <file name>"));

Example:

Scanner input = new Scanner(new File("numbers.txt"));

or:

File file = new File("numbers.txt");
Scanner input = new Scanner(file);

6Copyright 2006 by Pearson Education

File names and paths
� relative path: does not specify any top-level folder

� "names.dat"

� "input/kinglear.txt"

� absolute path: specifies drive letter or top "/" folder
� "C:/Documents/smith/hw6/input/data.csv"

� Windows systems can also use backslashes to separate folders.

� When you construct a File object with a relative path,

Java assumes it is relative to the current directory.

� Scanner input = new Scanner(new File("data/readme.t xt"));

� If our program is in H:/hw6 ,
Scanner will look for H:/hw6/data/readme.txt .

7Copyright 2006 by Pearson Education

Compiler error with files
� The following program does not compile:

import java.io.*; // for File
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

� The following compiler error is produced:

ReadFile.java:6: unreported exception
java.io.FileNotFoundException; must be caught or de clared

to be thrown

Scanner input = new Scanner(new File("data.txt"));

^

8Copyright 2006 by Pearson Education

Exceptions

� exception: An object that represents a program error.

� Programs with invalid logic will cause exceptions.

� Examples:

� dividing by 0

� calling charAt on a String and passing too large an index

� trying to read a file that does not exist

� We say that a logical error throws an exception.

� It is also possible to catch (handle or fix) an exception.

9Copyright 2006 by Pearson Education

Checked exceptions

� checked exception: An error that must be handled by

our program (otherwise it will not compile).

� We must specify how our program will handle file I/O failures.

� We must either:

� Declare that our program will handle ("catch") the exception, or

� State that we choose not to handle ("throw") the exception.

(and we accept that the program will crash if an exception occurs)

10Copyright 2006 by Pearson Education

Throwing exception syntax
� throws clause: Keywords placed on a method's header

to state that it may generate an exception.

� It's like a waiver of liability:

"I hereby agree that this method might throw an exception, and

I accept the consequences (crashing) if this happens."

� Syntax:

public static <type> <name>(<params>) throws <type> {

� When doing file I/O, we use FileNotFoundException .

public static void main(String[] args)

throws FileNotFoundException {

11Copyright 2006 by Pearson Education

Fixed compiler error
� The following corrected program does compile:

import java.io.*; // for File, FileNotFoundException
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

12Copyright 2006 by Pearson Education

Files and input cursor
� Consider a file numbers.txt that contains this text:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� A Scanner views all input as a stream of characters:

� 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

� input cursor: Current position of the Scanner in the input.

13Copyright 2006 by Pearson Education

Input tokens
� token: A unit of user input, separated by whitespace.

� When you call methods such as nextInt , the Scanner splits the

input into tokens.

� Example: If an input file contains the following:
23 3.14

"John Smith"

� The Scanner can interpret the tokens as the following types:

Token Type(s)
1. 23 int , double , String
2. 3.14 double , String
3. "John String
4. Smith" String

14Copyright 2006 by Pearson Education

Consuming tokens
� consuming input: Reading input and advancing the cursor.

� Each call to next , nextInt , etc. advances the cursor to the end

of the current token, skipping over any whitespace.

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.nextDouble() --> 308.2

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.next() --> "14.9"

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

15Copyright 2006 by Pearson Education

File input question
� Consider the following input file numbers.txt :

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� Write a program that reads the first 5 values from this
file and prints them along with their sum.

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

Sum = 337.19999999999993

16Copyright 2006 by Pearson Education

File input answer
// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.txt"));
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

17Copyright 2006 by Pearson Education

Common Scanner errors
� NoSuchElementException

� You read past the end of the input.

� InputMismatchException
� You read the wrong type of token (e.g. read "hi" as int).

� Finding and fixing these exceptions:

� Carefully read the exception text for line numbers in your code
(the first line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementE xception

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

18Copyright 2006 by Pearson Education

Testing for valid input
� A Scanner has methods to see what the next token will be:

� These methods do not actually consume input.

� They just give information about what input is waiting.

� They are useful to see what input is coming, and to avoid crashes.

returns true if there is a next token and it can
be read as a double

hasNextDouble()

returns true if there is a next token and it can
be read as an int

hasNextInt()

returns true if there are any more tokens of

input to read (always true for console input)

hasNext()

DescriptionMethod

19Copyright 2006 by Pearson Education

Scanner condition examples
� The hasNext methods are useful to avoid exceptions.

Scanner console = new Scanner(System.in);
System.out.print("How old are you? ");
if (console.hasNextInt()) {

int age = console.nextInt(); // will not crash!
System.out.println("Wow, " + age + " is old!");

} else {
System.out.println("You didn't type an integer.");

}

� The hasNext methods are also useful with file scanners.

Scanner input = new Scanner(new File("example.txt")) ;
while (input.hasNext()) {

String token = input.next(); // will not crash!
System.out.println("token: " + token);

}

20Copyright 2006 by Pearson Education

File input question 2
� Modify the Echo program to process the entire file:

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

number = 4.7

number = -15.4

number = 2.8

Sum = 329.29999999999995

21Copyright 2006 by Pearson Education

File input answer 2
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

22Copyright 2006 by Pearson Education

File input question 3
� Modify the program again to handle files that also
contain non-numeric tokens.

� The program should skip any such tokens.

� For example, it should produce the same output as
before when given this input file, numbers2.dat :

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

23Copyright 2006 by Pearson Education

File input answer 3
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo3 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers2.dat"));
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

} else {
input.next(); // throw away the bad token

}
}
System.out.println("Sum = " + sum);

}
}

24Copyright 2006 by Pearson Education

File processing question
� Write a program that accepts an input file containing integers

representing daily high temperatures.

Example input file:

42 45 37 49 38 50 46 48 48 30 45 42 45 40 48

� Your program should print the difference between each adjacent
pair of temperatures, such as the following:

Temperature changed by 3 deg F
Temperature changed by -8 deg F
Temperature changed by 12 deg F
Temperature changed by -11 deg F
Temperature changed by 12 deg F
Temperature changed by -4 deg F
Temperature changed by 2 deg F
Temperature changed by 0 deg F
Temperature changed by -18 deg F
Temperature changed by 15 deg F
Temperature changed by -3 deg F
Temperature changed by 3 deg F
Temperature changed by -5 deg F
Temperature changed by 8 deg F

25Copyright 2006 by Pearson Education

File processing answer
// Reads temperatures from a file and outputs the difference
// between each pair of neighboring days.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Temperatures {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("weather.dat")) ;
int temp1 = input.nextInt();
while (input.hasNextInt()) {

int temp2 = input.nextInt();
System.out.println("Temperature changed by " +

(temp2 - temp1) + " deg F");
temp1 = temp2;

}
}

}

